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1 Method used

We use the so-called F -statistic, a coherent matched-filtering detection statis-
tic first introduced by Jaranowski et al. [5] in the context of the search for
continuous-wave signals in ground based detectors. This method has been
implemented by the LIGO Scientific collaboration in LAL/LALApps [7], and
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is currently used in the search for quasi-periodic GW signals from spinning
neutron stars [e.g. see 1]. The generalization of the F -statistic to a coherent
multi-detector search was first obtained by Cutler and Schutz [3]. The ap-
plication of the F -statistic to the search of continuous-wave sources (such as
galactic white-dwarf binaries) using LISA was first discussed in Królak et al.
[6].
The multi-detector F -statistic has been implemented in LALapps, in the
code ComputeFStatistic v2, which we are using for the present analysis.

1.1 Multi-detector F-statistic

Here we give a brief introduction into the formalism and notation of the F -
statistic, see [8] for more details. As shown in [5], the dimensionless strain
signal sX(t) of a continuous gravitational wave at detector X can be repre-
sented in the form

sX(t) =
4∑

µ=1

Aµ hX
µ (t) , (1.1.1)

in terms of four signal-amplitudes Aµ, which are independent of the detector
X, and the detector-dependent basis waveforms hX

µ (t). The four amplitudes
Aµ can be expressed in terms of two polarization amplitudes A+, A×, the
initial phase φ0 in the solar-system barycenter (SSB) at a reference time τref ,
and the polarization angle ψ of the wave frame with respect to the equatorial
coordinate system, namely

A1 = A+ cosφ0 cos 2ψ − A× sinφ0 sin 2ψ , (1.1.2a)

A2 = A+ cosφ0 sin 2ψ + A× sinφ0 cos 2ψ , (1.1.2b)

A3 = −A+ sinφ0 cos 2ψ − A× cosφ0 sin 2ψ , (1.1.2c)

A4 = −A+ sinφ0 sin 2ψ + A× cosφ0 cos 2ψ . (1.1.2d)

We can further relate the two polarization amplitudes A+ and A× to the
overall amplitude h0 and the inclination angle ι of the quadrupole rotation
axis with respect to the line of sight, namely

A+ =
1

2
h0

(
1 + cos2 ι

)
, A× = h0 cos ι . (1.1.3)

The four basis waveforms hX
µ (t) can be written as

hX
1 (t) = aX(t) cosφX(t) , hX

2 (t) = bX(t) cosφX(t) ,

hX
3 (t) = aX(t) sinφX(t) , hX

4 (t) = bX(t) sinφX(t) ,
(1.1.4)
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where aX(t) and bX(t) are the antenna-pattern functions (see Eqs.(12,13) of
[5]), and φX(t) is the signal phase at the detector X. The antenna-pattern
functions aX(t), bX(t) depend on the sky position of the GW source (which

is equivalent to the propagation direction k̂ of the wave), and on the location
and orientation of the detector X. The phase φX(t) also depends on the
intrinsic phase parameters, ω say, of the signal. In the case of continuous
waves from isolated neutron stars, ω would only consist of the s + 1 spin
parameters, i.e. ω = {f (k)}sk=0, where f (k) is the k-th time-derivative of the
intrinsic signal frequency in the SSB.
In the following we denote the set of “Doppler parameters” (i.e. the param-

eters affecting the time evolution of the phase) by λ ≡ {k̂, ω}, as opposed to
the four “amplitude parameters” {A}µ = Aµ.
Using the multi-detector notation of [3, 6], we write vectors in “detector-
space” in boldface, i.e. {s}X = sX, and so the signal model (1.1.1) can be
written as

s(t;A, λ) = Aµ hµ(t;λ) , (1.1.5)

with implicit summation over repeated amplitude indices, µ ∈ {1, 2, 3, 4}.
The multi-detector scalar product is defined as

(x|y) ≡
∫ ∞

−∞
x̃X(f)S−1

XY(f) ỹY∗(f) df , (1.1.6)

where x̃(f) denotes the Fourier transform of x(t). We use implicit summation
over repeated detector indices, and the inverse noise matrix is defined by
S−1

XY S
YZ = δZ

X. In the case of uncorrelated noise, where SXY = SX δXY, the
scalar product simplifies to

(x|y) =
∑
X

(xX|yX) , (1.1.7)

in terms of the usual single-detector scalar product

(xX|yX) ≡
∫ ∞

−∞

x̃X(f) ỹX∗(f)

SX(f)
df . (1.1.8)

With the signal model (1.1.1), the log-likelihood ratio is found as

ln Λ(x;A, λ) = Aµ xµ −
1

2
AµMµν Aν , (1.1.9)

where we defined

xµ(λ) ≡ (x|hµ) , (1.1.10)

Mµν(λ) ≡ (hµ|hν) . (1.1.11)
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We see that the likelihood ratio (1.1.9) can be maximized analytically with
respect to the unknown amplitudes Aµ, resulting in the maximum-likelihood
estimators

Aµ
MLE =Mµν xν . (1.1.12)

Substituting this into the detection statistic, we obtain the so-called F-
statistic, namely

2F(x;λ) ≡ xµMµν xν , (1.1.13)

whereMµν ≡ {M−1}µν , i.e.MµαMαν = δν
µ.

Let us consider the case where the target Doppler parameters λ are perfectly
matched to the signal λs, we find the expectation value of the F -statistic as

E[2F ] = 4 + SNR2 , (1.1.14)

in terms of the “optimal” signal-to-noise ratio SNR, which is expressible as

SNR2 = sµMµν sν = AµMµν Aν = (s|s) . (1.1.15)

1.2 Parameter-estimation

From the expression (1.1.12) for the maximum-likelihood amplitudes Aµ in
terms of the measured Fa, Fb, we can infer the signal-parameters A+, A× (or
equivalently h0, cos ι) and ψ, φ0, by using (1.1.3) and (1.1.2). We compute
the two quantities

A2
s ≡

4∑
µ=1

(Aµ)2 = A2
+ + A2

× , (1.2.1)

Da ≡ A1A4 −A2A3 = A+A× , (1.2.2)

which can easily be solved for A+, A×, namely

2A2
+,× = A2

s ±
√
A4

s − 4D2
a , (1.2.3)

where our convention here is |A+| ≥ |A×|, cf. (1.1.3), and therefore the ’+’
solution is A+, and the ′−′ is A×. The sign of A+ is always positive by this
convention, while the sign of A× is given by the sign of Da, as can be seen
from (1.2.2). Note that the discriminant in (1.2.3) is also expressible as

disc ≡
√
A4

s − 4D2
a = A2

+ − A2
× ≥ 0 . (1.2.4)

Having computed A+, A×, we can now also obtain ψ and φ0, namely defining
β ≡ A×/A+, and

b1 ≡ A4 − βA1 , (1.2.5)

b2 ≡ A3 + βA2 , (1.2.6)

b3 ≡ βA4 −A1 , (1.2.7)
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we easily find

ψ =
1

2
atan

(
b1
b2

)
. (1.2.8)

and

φ0 = atan

(
b2
b3

)
. (1.2.9)

The amplitudes Aµ are seen from (1.1.2) to be invariant under the follow-
ing gauge-transformation, namely simultaneously {ψ → π/2, φ0 → φ0 + π}.
Applying this twice, and taking account of the trivial gauge-freedom by 2π,
this also contains the invariance ψ → ψ+π. Note that there is still an overall
sign-ambiguity in the amplitudes Aµ, which can be determined as follows:
compute a ’reconstructed’ A1

r from (1.1.2) using the estimates A+,× and ψ,
φ0, and compare its sign to the original estimate A1 of (1.1.12). If the sign
differs, the correct solution is simply found by replacing φ0 → φ0 + π.
In order to fix a unique gauge, we restrict the quadrant of ψ to be ψ ∈
[−π/4, π/4) (in accord with the TDS convention), which can always be
achieved by the above gauge-transformation, while φ0 remains unconstrained
in φ0 ∈ [0, 2π).
Converting A+, A× into h0 and µ ≡ cos ι is done by solving (1.1.3), which
yields

h0 = A+ +
√
A2

+ − A2
× , (1.2.10)

where we only kept the ’+’ solution, as we must have h0 > A+. Finally,
µ = cos ι is simply given by cos ι = A×/h0.
We know that the errors dxµ satisfy (assuming Gaussian noise):

E[dxµ dxν ] =Mµν . (1.2.11)

As a consequence of (1.1.12), we therefore obtain the covariance-matrix of
the estimation-errors dAµ as

E[dAµ dAν ] =Mµν , (1.2.12)

which corresponds to the Cramér-Rao bound, and Mµν is seen to be the
inverse Fisher-matrix. The corresponding Fisher matrix for the variables
{h0, cos ι, ψ, φ0} is simply obtained from the above together with the appro-
priate Jacobian accounting for the variables-transformation from Aµ.
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1.2.1 MLDC conventions for amplitude parameters

Unfortunately, the MLDC conventions for the amplitude parameters differ
from the above standard LIGO/CW definitions for {h0, cos ι, ψ, φ0}. Here we
only summarize without derivation how the “translation” is performed:

• MLDC “Amplitude” = h0/2

• MLDC “Inclination” = π − ι

• MLDC “Polarization” = π/2− ψ

• MLDC “InitialPhase” = φ0 (yea!)

Note: using these translations we still observe a systematic difference of π in
φ0 with respect to the “InitialPhase” for the Training-sets 1.1.1abc, 1.1.2. We
therefore tentatively “fixed” this phase-error (equivalent to an overall sign-
change of the waveform). In Challenge 1.1.3, however, the “InitialPhase”
suddenly seems to agree with φ0 without the phase-difference of π! This
indicates either a problem in our codes, or in the production of the MLDC
data-sets.

1.3 TDI and long-wavelength approximation

Figure 1: LISA configuration and TDI conventions used.

In the following we assume a stationary LISA array (cf. Fig. 1), and denote
~pi the vectors from the guiding center O to i. We assume here and in the
following that the LISA geometry is measured in light-travel time, e.g. L ≡
L̃/c, where L̃ is measured in units of length.
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1.3.1 Doppler variables

The single-arm Doppler response to a GW yGW
slr (t) ∼ ∆ν/ν of the light path

s→ r along arm l can be shown [4, 2] to be

yGW
slr = (1 + εslr k̂ · n̂l)

[
Ψl(t− k̂ · ~ps − Ll)−Ψl(t− k̂ · ~pr)

]
, (1.3.1)

where

Ψl ≡
1

2

n̂l ·
←→
h · n̂l

1− (k̂ · n̂l)2
. (1.3.2)

Note the geometrical identity ~pr − ~ps = Ll n̂l εslr. We further introduce the
time-delay operator

yslr,d1...dm(t) = yslr(t− Ld1 − ...− Ldm) . (1.3.3)

Various TDI-observables can be constructed from the single-arm building
blocks (1.3.1) with suitable time-delays (1.3.3) as to cancel the (otherwise
dominating) laser-noise. One such set of 3 laser-noise free observables is
X, Y, Z, defined as

X ≡ y132,322− y123,233 + y231,22− y321,33 + y123,2− y132,3 + y321− y231 , (1.3.4)

and Y and Z are given by cyclic permutations of {1, 2, 3}. Geometrically
these observables correspond to a ’double-arm’ interferometer, e.g. for X
one light-path is 1→ 3→ 1→ 2→ 1 and the second ’arm’ is 1→ 2→ 1→
3→ 1.
To simplify matters, we will here restrict ourselves to work in the long-
wavelength limit (LWL). The characteristic timescale on which a GW of
frequency f is changing is given by ḣ ∼ 2πf O(h), so the characteristic
length-scale is λ/2π, the so-called reduced wavelength. The LWL is there-
fore characterized by assuming |~pl| ∼ L = L̃/c � λ/2πc, which whould be
valid for GW frequencies f � 1/(2πL) ∼ 10 mHz, assuming an arm-length of
L ∼ 5×106 km/c ∼ 17 s. We can therefore Taylor-expand in ε ≡ 2πfL� 1.
The LWL of the single-arm GW responses (1.3.1) is found as

yGW
slr = −Ll

2
n̂l ·
←̇→
h · n̂l +O(ε2) . (1.3.5)

Note that the Doppler-readouts contain no zero-order contributions in L, i.e.
yGW

slr = O(ε).
In order to express (1.3.4) in the LWL, we also need to expand the time-delays
(1.3.3), namely

yslr,d1...dm(t) = yslr(t)− ẏslr(t) (Ld1 + ...+ Ldm) +O(ε2) . (1.3.6)
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Using this and the symmetry of the first-order term (1.3.5), we can expand
X, defined in (1.3.4), in the form

X = 4L3 ẏ
(1)
123 − 4L2 ẏ

(1)
231 +O(ε3) . (1.3.7)

Plugging in the expansion (1.3.5) of the Doppler readouts, we find the lowest-
order contribution as

X(2) = −2L2L3 (n̂2 ⊗ n̂2 − n̂3 ⊗ n̂3) :
←̈→
h , (1.3.8)

which corresponds to the standard LWL expression for the measured strain
h(t) of ground-based detectors, up to a constant pre-factor of −4L2L3 and

the second time-derivative of
←→
h , i.e. we could write X(2) = −4L2L3 ḧ23(t),

where h23(t) ≡
←→
d23 :

←→
h and where we defined the detector-tensor

←→
dlj as

←→
d lj ≡

1

2
(n̂l ⊗ n̂l − n̂j ⊗ n̂j) . (1.3.9)

The remaining observables Y, Z are obtained by cyclic index-permutation

X(2) = −4L2L3

←→
d23 :

←̈→
h , (1.3.10a)

Y (2) = −4L3L1

←→
d31 :

←̈→
h , (1.3.10b)

Z(2) = −4L1L2

←→
d12 :

←̈→
h , (1.3.10c)

which gives us the explicit relation (to lowest order) between the TDI-

observables X, Y, Z given in the MLDC, and the GW tensor
←→
h as used

in the F -statistic analysis, as discussed in Sec. 1.1.

1.3.2 Phase variables

1.4 Wide-parameter search grid

For simplicity we used a “foliated” template grid Freq x Sky in the Doppler
parameter space ∆λ = {f, α, δ}, consisting of a isotropic sky-grid with step-
sizes at the equator:

dα(0) = dδ =

√
2m

(Rorb/c)2π f
, (1.4.1)

while for different latitudes we’ll use dα(δ) = dα(0)/ cos(δ), in order to obtain
an isotropic sky-grid. The frequency step-size is given by

df =

√
12m

π T
, (1.4.2)
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where m is the desired maximal mismatch, f is the search-frequency and
T the length of observation. The expression for the frequency-resolution is
the standard metric frequency stepsize, while the sky-resolution is approxi-
mately valid for observation times T & 1/2 year, and can be derived from
the orbital phase-metric. In Fig. 2, these grid step sizes are denoted by
dD ≡ {df, dα, dδ}.
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1.5 Pipeline

Repeat zoomLevel times

Wide−parameter F−stat
search  {f, alpha, delta}

above threshold 2F > 2Fth

Single−IFO: TDI X

Wide−parameter F−stat
search  {f, alpha, delta}

Keep N loudest candidates
above threshold 2F > 2Fth

Single−IFO:

Wide−parameter F−stat
search  {f, alpha, delta}

Keep N loudest candidates
above threshold 2F > 2Fth

Single−IFO: TDI ZTDI Y

Keep N loudest candidates

Keep coincident local maxima

{f, alpha, delta}

Find local maxima in

{f, alpha, delta}

Find local maxima in

{f, alpha, delta}

Find local maxima in

in sphere of radius R = 2 dD

in sphere of radius R=2 dD

ZOOM−IN followup:

Multi−IFO: X + Y + Z

SECONDARY: within 1e−4 f of PRIMARY

Classify candidates: 

in sphere of radius R = 2 dD in sphere of radius R = 2 dD

Search in cube of 4dD x 4dD x 4dD

Increase resolution by zoomFactor

PRIMARY: max SNR within 1e−4 f

Figure 2: Schematic representation of wide-parameter pipeline. dD denotes
the grid step-sizes discussed in Sec. 1.4.

For the wide-parameter searches, we use the pipeline shown in Fig. 2, where
we typically keep the N = 20, 000 loudest candidates above SNR > 10 in the
first stage, and zoom by a factor zoomFactor = 10 for zoomLevel = 2 times
in the third stage, yielding a refinement of a factor of 100 with respect to the
initial wide-parameter grid. The search-grid in the first stage is constructed
for a maximal mismatch of m ∼ 0.3− 0.4.
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Several secondary maxima of true signals pass the triple-coincidence step
and cannot be discarded or distinguished without further study. These sec-
ondary candidates are typically found within a frequency band of up to
∆f . 1.4× 10−4 f of the true signal frequency f . In the last step, we there-
fore classify all triple-coincident candidates as PRIMARY or SECONDARY:
beginning with the loudest unclassified candidate, all candidates within ∆f
of this candidate are classified as SECONDARY. We then proceed to the
next loudest candidate until all candidates have been processed. However,
this algorithm will classify true signals as SECONDARY if they lie too close
to each other, which happens in Challenges 1.1.4 and 1.1.5. Further study is
required for a finer distinction of true signals and secondary maxima.

1.5.1 Generation of SFTs

2 Challenge Searches and Results

The primary candidates of the different searches are found in the files RESULT *.dat,
while the corresponding secondary candidates are given for references in the
files SECONDARY *.dat. Note: while the first-stage threshold is on the single-
IFO SNR, the last column ’SNR’ in the result files give the final multi-IFO
SNR using the combined TDI channels X, Y and Z.

2.1 Challenge 1.1.1

The first-stage single-IFO threshold used as 2F > 100, corresponding to an
SNR & 10. A single PRIMARY candidate passed the pipeline in each of the
challenges 1.1.1a, 1.1.1b and 1.1.1c.

2.2 Challenge 1.1.2

No wide-parameter search pipeline was required, as the Doppler-positions
{f, α, δ} of the sources were given: we therefore performed a single-template
search for each source position and estimated its amplitude parameters {h0, cos ι, ψ, φ0},
as described in Sec. 1.2.

2.3 Challenge 1.1.3

The specification of this challenge stated that all signals would be above
SNR > 10. However, a targeted search on the Training-set, using the
Doppler-parameters given in the key, showed that bltOPEN113, bltOPEN115
and bltOPEN116 had single-IFO SNRs below 10 (namely 7.5, 4.3 and 6.0
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respectively). We therefore lowered the first-stage single-IFO threshold to
2F > 30 (i.e. SNR & 5), and we found 16 (LISAsim) and 17 (synthLISA)
primary candidates out of the injected 20 signals. The missed signals most
likely have a too low SNR to be detected in the first stage despite the lower
threshold, given that the discrete template grid used had a maximal mis-
match of m = 0.4.

2.4 Challenge-1.1.4

We used a first-stage single-IFO threshold of 2F > 20 (SNR & 4). The clas-
sification algorithm resulted in a total of 26 (LISAsim) and 24 (synthLISA)
PRIMARY candidates respectively. Many missed signals were most likely
classified as SECONDARY maxima due to the closeness in frequency of the
signals.

2.5 Challenge-1.1.5

Using the same threshold of 2F > 20, we found only 5 PRIMARY candidates,
both with synthLISA and LISAsim data. This is expected from the high
density of signals in a very narrow frequency band and our classification
algorithm using a frequency band of ∆f = 1.4× 10−4 f . In fact, running the
classification on the signal-parameters of the Training-set key yielded only 6
primary candidates. A more detailed understanding of the parameter-space
structure is required to be able to distinguish secondary maxima from true
signals within the Doppler window of ∆f .
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